skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pruett, Jenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With decades of intensive study, Anolis lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as an emerging model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of Anolis positions them as a powerful model system in ecology and evolution for years to come. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  2. Georgiou, H. (Ed.)
    Addressing the challenges facing society and the world will require an understanding of the biases and limitations of science. To combat these challenges, here, we advocate for the incorporation of ideologically aware (IA) material into postsecondary biology curricula. IA materials communicate to students how biases, assumptions, and stereotypes inform approaches to and outcomes of science. By engaging with IA materials, student awareness of the impact of science on social problems is expected to increase. In this paper, we situate this IA approach with two other pedagogical approaches that incorporate societally relevant content: culturally relevant pedagogy and socioscientific issues. We then call for research to test ways of supporting instructor implementation of IA material, to evaluate the impact of IA topics on student academic and sociopsychological outcomes, and to explore how to implement IA material in different cultural and social settings. Throughout, we focus on IA topics in the context of postsecondary biology classrooms but encourage the incorporation of IA materials across scientific disciplines and educational settings. Our hope is that greater inclusion of IA materials will create more transparent, scientifically accurate, and inclusive classrooms. 
    more » « less
  3. Maternal nesting behavior in oviparous species strongly influences the environmental conditions their embryos experience during development. In turn, these early-life conditions have consequences for offspring phenotypes and many fitness components across an individual’s lifespan. Thus, identifying the evolutionary and ecological causes and effects of nesting behavior is a key goal of behavioral ecology. Studies of reptiles have contributed greatly to our understanding of how nesting behavior shapes offspring phenotypes. While some taxonomic groups have been used extensively to provide insights into this important area of biology, many groups remain poorly studied. For example, the squamate genus Anolis has served as a model to study behavior, ecology, and evolution, but research focused on Anolis nesting behavior and developmental plasticity is comparatively scarce. This dearth of empirical research may be attributed to logistical challenges (e.g., difficulty locating nests), biological factors (e.g., their single-egg clutches may hinder some experimental designs), and a historical focus on males in Anolis research. Although there is a gap in the literature concerning Anolis nesting behavior, interest in nesting ecology and developmental plasticity in this group has grown in recent years. In this paper, we (1) review existing studies of anole nesting ecology and developmental plasticity; (2) highlight areas of anole nesting ecology that are currently understudied and discuss how research in these areas can contribute to broader topics (e.g., maternal effects and global change biology); and (3) provide guidelines for studying anole nesting in the field. Overall, this review provides a foundation for establishing anoles as models to study nesting ecology and developmental plasticity. 
    more » « less
  4. Warfa, Abdi (Ed.)
    Students’ perceptions of challenges in biology influence performance outcomes, experiences, and persistence in science. Identifying sources of student struggle can assist efforts to support students as they overcome challenges in their undergraduate educations. In this study, we characterized student experiences of struggle by 1) quantifying which external factors relate to perceptions of encountering and overcoming struggle in introductory biology and 2) identifying factors to which students attribute their struggle in biology. We found a significant effect of Course, Instructor, and Incoming Preparation on student struggle, in which students with lower Incoming Preparation were more likely to report struggle and the inability to overcome struggle. We also observed significant differences in performance outcomes between students who did and did not encounter struggle and between students who did and did not overcome their struggle. Using inductive coding, we categorized student responses outlining causes of struggle, and using axial coding, we further categorized these as internally or externally attributed factors. External sources (i.e., Prior Biology, COVID-19, External Resources, Classroom Factors) were more commonly cited as the reason(s) students did or did not struggle. We conclude with recommendations for instructors, highlighting equitable teaching strategies and practices. 
    more » « less